457 research outputs found

    Double exchange magnets: Spin-dynamics in the paramagnetic phase

    Full text link
    The electronic structure of perovskite manganese oxides is investigated in terms of a Kondo lattice model with ferromagnetic Hund coupling and antiferromagnetic exchange between t2gt_{2g}-spins using a finite temperature diagonalization technique. Results for the dynamic structure factor are consistent with recent neutron scattering experiments for the bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_2O7_7 . The susceptibility shows Curie-Weiss behaviour and is used to derive a phase diagram. In the paramagnetic phase carriers are characterized as ferromagnetic polarons in an antiferromagnetic spin liquid.Comment: Revtex, 4 pages with 5 postscript figures include

    A Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4

    Full text link
    Inelastic neutron scattering performed at a spallation source is used to make absolute measurements of the dynamic susceptibility of insulating La2CuO4 and superconducting La2-xSrxCuO4 over the energy range 15<EN<350 meV. The effect of Sr doping on the magnetic excitations is to cause a large broadening in wavevector and a substantial change in the spectrum of the local spin fluctuations. Comparison of the two compositions reveals a new energy scale of 22 meV in La1.86Sr0.14CuO4.Comment: RevTex, 7 Pages, 4 postscript figure

    Spin excitations used to probe the nature of the exchange coupling in the magnetically ordered ground state of Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3}

    Full text link
    We have used time-of-flight inelastic neutron scattering to measure the spin wave spectrum of the canonical half-doped manganite Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3}, in its magnetic and orbitally ordered phase. The data, which cover multiple Brillouin zones and the entire energy range of the excitations, are compared with several different models that are all consistent with the CE-type magnetic order, but arise through different exchange coupling schemes. The Goodenough model, i.e. an ordered state comprising strong nearest neighbor ferromagnetic interactions along zig-zag chains with antiferromagnetic inter-chain coupling, provides the best description of the data, provided that further neighbor interactions along the chains are included. We are able to rule out a coupling scheme involving formation of strongly bound ferromagnetic dimers, i.e. Zener polarons, on the basis of gross features of the observed spin wave spectrum. A model with weaker dimerization reproduces the observed dispersion but can be ruled out on the basis of discrepancies between the calculated and observed structure factors at certain positions in reciprocal space. Adding further neighbor interactions results in almost no dimerization, i.e. recovery of the Goodenough model. These results are consistent with theoretical analysis of the degenerate double exchange model for half-doping, and provide a recipe for how to interpret future measurements away from half-doping, where degenerate double exchange models predict more complex ground states.Comment: 14 pages, 11 figure

    HORACE: software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments

    Get PDF
    The HORACE suite of programs has been developed to work with large multiple-measurement data sets collected from time-of-flight neutron spectrometers equipped with arrays of position-sensitive detectors. The software allows exploratory studies of the four dimensions of reciprocal space and excitation energy to be undertaken, enabling multi-dimensional subsets to be visualized, algebraically manipulated, and models for the scattering to simulated or fitted to the data. The software is designed to be an extensible framework, thus allowing user-customized operations to be performed on the data. Examples of the use of its features are given for measurements exploring the spin waves of the simple antiferromagnet RbMnF3_{3} and ferromagnetic iron, and the phonons in URu2_{2}Si2_{2}.Comment: 14 pages, 6 figure

    Absence of strong magnetic fluctuations in the iron phosphide superconductors LaFePO and Sr2ScO3FeP

    Full text link
    We report neutron inelastic scattering measurements on polycrystalline LaFePO and Sr2ScO3FeP, two members of the iron phosphide families of superconductors. No evidence is found for any magnetic fluctuations in the spectrum of either material in the energy and wavevector ranges probed. Special attention is paid to the wavevector at which spin-density-wave-like fluctuations are seen in other iron-based superconductors. We estimate that the magnetic signal, if present, is at least a factor of four (Sr2ScO3FeP) or seven (LaFePO) smaller than in the related iron arsenide and chalcogenide superconductors. These results suggest that magnetic fluctuations are not as influential on the electronic properties of the iron phosphide systems as they are in other iron-based superconductors.Comment: 7 pages, 5 figure

    Spin wave spectrum of the quantum ferromagnet on the pyrochlore lattice Lu2V2O7

    Get PDF
    Neutron inelastic scattering has been used to probe the spin dynamics of the quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu2V2O7. Well-defined spin waves are observed at all energies and wavevectors, allowing us to determine the parameters of the Hamiltonian of the system. The data are found to be in excellent overall agreement with a minimal model that includes a nearest- neighbour Heisenberg exchange J = 8:22(2) meV and a Dzyaloshinskii-Moriya interaction (DMI) D =1:5(1) meV. The large DMI term revealed by our study is broadly consistent with the model developed by Onose et al. to explain the magnon Hall effect they observed in Lu2V2O7 [1], although our ratio of D=J = 0:18(1) is roughly half of their value and three times larger than calculated by ab initio methods [2].Comment: 5 pages, 4 figure

    Zener double exchange from local valence fluctuations in magnetite

    Get PDF
    Magnetite (Fe3_{3}O4_{4}) is a mixed valent system where electronic conductivity occurs on the B-site (octahedral) iron sublattice of the spinel structure. Below TV=122T_{V}=122 K, a metal-insulator transition occurs which is argued to arise from the charge ordering of 2+ and 3+ iron valences on the B-sites (Verwey transition). Inelastic neutron scattering measurements show that optical spin waves propagating on the B-site sublattice (\sim80 meV) are shifted upwards in energy above TVT_{V} due to the occurrence of B-B ferromagnetic double exchange in the mixed valent metallic phase. The double exchange interaction affects only spin waves of Δ5\Delta_{5} symmetry, not all modes, indicating that valence fluctuations are slow and the double exchange is constrained by electron correlations above TVT_{V}.Comment: 4 pages, 5 figure
    corecore